x^2+(2x)^2=40

Simple and best practice solution for x^2+(2x)^2=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+(2x)^2=40 equation:



x^2+(2x)^2=40
We move all terms to the left:
x^2+(2x)^2-(40)=0
We add all the numbers together, and all the variables
3x^2-40=0
a = 3; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·3·(-40)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{30}}{2*3}=\frac{0-4\sqrt{30}}{6} =-\frac{4\sqrt{30}}{6} =-\frac{2\sqrt{30}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{30}}{2*3}=\frac{0+4\sqrt{30}}{6} =\frac{4\sqrt{30}}{6} =\frac{2\sqrt{30}}{3} $

See similar equations:

| 2x+1x=2 | | -6(-b*4)=18 | | 3r+9=-3 | | 2(4-x)=-3x+2 | | 5m=24+m | | 7-4n+2n=13 | | -1.44-x=2.43 | | 6x-226=86-7x | | 17=w/3+13 | | 3(4x-10)=90 | | 3−3b=–3b | | 10*(-3n+8)=380 | | x/15=576 | | 7-x4=13 | | x+16+x+16+3x-22=180 | | 382=8x*x | | b+451=-971 | | x²-10x=11 | | X+3=19-3x | | 8p÷2=28p= | | -13x-98=91-4x | | 100x^2-180x=-81 | | 5x+2x+3x+10+10=+100 | | 12y-7y-9=44.80 | | 6+12=6x+18 | | −2(−3x+3)+2x=58 | | –4=–2r+16 | | 18(32)=8x^ | | x=18/27 | | –4=–2r+16* | | 12x+14-3=3(3x+4)+2 | | y2-8y-12=0 |

Equations solver categories